Copied to
clipboard

G = C2xC23.47D4order 128 = 27

Direct product of C2 and C23.47D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC23.47D4, C24.180D4, C23.39SD16, C4:C4.49C23, C4.Q8:60C22, (C2xC4).284C24, (C2xC8).309C23, (C22xC4).435D4, C23.662(C2xD4), (C2xQ8).63C23, Q8:C4:80C22, C2.12(C22xSD16), C22.23(C2xSD16), C22:C8.213C22, (C23xC4).554C22, (C22xC8).346C22, C22.544(C22xD4), C22:Q8.156C22, (C22xC4).1003C23, C4.56(C22.D4), (C22xQ8).289C22, C22.110(C8.C22), C22.107(C22.D4), (C2xC4.Q8):31C2, C4.94(C2xC4oD4), (C2xC4).846(C2xD4), (C2xQ8:C4):39C2, (C22xC4:C4).45C2, (C2xC22:C8).39C2, C2.26(C2xC8.C22), (C2xC22:Q8).54C2, (C2xC4).842(C4oD4), (C2xC4:C4).924C22, C2.49(C2xC22.D4), SmallGroup(128,1818)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xC23.47D4
C1C2C4C2xC4C22xC4C2xC4:C4C22xC4:C4 — C2xC23.47D4
C1C2C2xC4 — C2xC23.47D4
C1C23C23xC4 — C2xC23.47D4
C1C2C2C2xC4 — C2xC23.47D4

Generators and relations for C2xC23.47D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce3 >

Subgroups: 412 in 230 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, Q8, C23, C23, C23, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, C22:C8, Q8:C4, C4.Q8, C2xC22:C4, C2xC4:C4, C2xC4:C4, C2xC4:C4, C22:Q8, C22:Q8, C22xC8, C23xC4, C23xC4, C22xQ8, C2xC22:C8, C2xQ8:C4, C2xC4.Q8, C23.47D4, C22xC4:C4, C2xC22:Q8, C2xC23.47D4
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C4oD4, C24, C22.D4, C2xSD16, C8.C22, C22xD4, C2xC4oD4, C23.47D4, C2xC22.D4, C22xSD16, C2xC8.C22, C2xC23.47D4

Smallest permutation representation of C2xC23.47D4
On 64 points
Generators in S64
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)
(2 64)(4 58)(6 60)(8 62)(10 29)(12 31)(14 25)(16 27)(17 54)(19 56)(21 50)(23 52)(33 42)(35 44)(37 46)(39 48)
(1 63)(2 64)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 54)(18 55)(19 56)(20 49)(21 50)(22 51)(23 52)(24 53)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 41)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 14 5 10)(2 28 6 32)(3 12 7 16)(4 26 8 30)(9 60 13 64)(11 58 15 62)(17 43 21 47)(18 37 22 33)(19 41 23 45)(20 35 24 39)(25 59 29 63)(27 57 31 61)(34 50 38 54)(36 56 40 52)(42 55 46 51)(44 53 48 49)

G:=sub<Sym(64)| (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (2,64)(4,58)(6,60)(8,62)(10,29)(12,31)(14,25)(16,27)(17,54)(19,56)(21,50)(23,52)(33,42)(35,44)(37,46)(39,48), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,14,5,10)(2,28,6,32)(3,12,7,16)(4,26,8,30)(9,60,13,64)(11,58,15,62)(17,43,21,47)(18,37,22,33)(19,41,23,45)(20,35,24,39)(25,59,29,63)(27,57,31,61)(34,50,38,54)(36,56,40,52)(42,55,46,51)(44,53,48,49)>;

G:=Group( (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (2,64)(4,58)(6,60)(8,62)(10,29)(12,31)(14,25)(16,27)(17,54)(19,56)(21,50)(23,52)(33,42)(35,44)(37,46)(39,48), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,14,5,10)(2,28,6,32)(3,12,7,16)(4,26,8,30)(9,60,13,64)(11,58,15,62)(17,43,21,47)(18,37,22,33)(19,41,23,45)(20,35,24,39)(25,59,29,63)(27,57,31,61)(34,50,38,54)(36,56,40,52)(42,55,46,51)(44,53,48,49) );

G=PermutationGroup([[(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60)], [(2,64),(4,58),(6,60),(8,62),(10,29),(12,31),(14,25),(16,27),(17,54),(19,56),(21,50),(23,52),(33,42),(35,44),(37,46),(39,48)], [(1,63),(2,64),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,54),(18,55),(19,56),(20,49),(21,50),(22,51),(23,52),(24,53),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,41)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,14,5,10),(2,28,6,32),(3,12,7,16),(4,26,8,30),(9,60,13,64),(11,58,15,62),(17,43,21,47),(18,37,22,33),(19,41,23,45),(20,35,24,39),(25,59,29,63),(27,57,31,61),(34,50,38,54),(36,56,40,52),(42,55,46,51),(44,53,48,49)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4N4O4P4Q4R8A···8H
order12···2222244444···444448···8
size11···1222222224···488884···4

38 irreducible representations

dim111111122224
type+++++++++-
imageC1C2C2C2C2C2C2D4D4C4oD4SD16C8.C22
kernelC2xC23.47D4C2xC22:C8C2xQ8:C4C2xC4.Q8C23.47D4C22xC4:C4C2xC22:Q8C22xC4C24C2xC4C23C22
# reps112281131882

Matrix representation of C2xC23.47D4 in GL5(F17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
0001216
,
10000
01000
00100
000160
000016
,
10000
016000
001600
00010
00001
,
160000
012500
0121200
00038
0001614
,
10000
04000
001300
00052
000512

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,12,12,0,0,0,5,12,0,0,0,0,0,3,16,0,0,0,8,14],[1,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,5,5,0,0,0,2,12] >;

C2xC23.47D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{47}D_4
% in TeX

G:=Group("C2xC2^3.47D4");
// GroupNames label

G:=SmallGroup(128,1818);
// by ID

G=gap.SmallGroup(128,1818);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,100,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<